Abstract
The evolution of flight is a rare event in vertebrate history, and one that demands functional integration across multiple anatomical/physiological systems. The neuroanatomical basis for such integration and the role that brain evolution assumes in behavioural transformations remain poorly understood. We make progress by (i) generating a positron emission tomography (PET)-based map of brain activity for pigeons during rest and flight, (ii) using these maps in a functional analysis of the brain during flight, and (iii) interpreting these data within a macroevolutionary context shaped by non-avian dinosaurs. Although neural activity is generally conserved from rest to flight, we found significant increases in the cerebellum as a whole and optic flow pathways. Conserved activity suggests processing of self-movement and image stabilization are critical when a bird takes to the air, while increased visual and cerebellar activity reflects the importance of integrating multimodal sensory information for flight-related movements. A derived cerebellar capability likely arose at the base of maniraptoran dinosaurs, where volumetric expansion and possible folding directly preceded paravian flight. These data represent an important step toward establishing how the brain of modern birds supports their unique behavioural repertoire and provide novel insights into the neurobiology of the bird-like dinosaurs that first achieved powered flight.
Footnotes
References
- 1.
Altshuler DL, Bahlman JW, Dakin R, Gaede AH, Goller B, Lentink D, Segre PS, Skandalis DA . 2015 The biophysics of bird flight: functional relationships integrate aerodynamics, morphology, kinematics, muscles, and sensors. Can. J. Zool 93, 961-975. (doi:10.1139/cjz-2015-0103) Crossref, Web of Science, Google Scholar - 2.
Bilo D . 1994 Course control during flight. In Perception and motor control in birds: an ecological approach (eds MNO Davies, PR Green) pp. 227–247. Berlin, Germany: Springer. Google Scholar - 3.
Butler PJ . 2016 The physiological basis of bird flight. Phil. Trans. R. Soc. B 371, 20150384. (doi:10.1098/rstb.2015.0384) Link, Web of Science, Google Scholar - 4.
Walsh SA, Iwaniuk AN, Knoll MA, Bourdon E, Barrett PM, Milner AC, Nudds RL, Abel RL, Sterpaio PD . 2013 Avian cerebellar floccular fossa size is not a proxy for flying ability in birds. PLoS ONE 8, e67176. (doi:10.1371/journal.pone.0067176) Crossref, PubMed, Web of Science, Google Scholar - 5.
Wylie DR, Gutiérrez-Ibáñez C, Gaede AH, Altshuler DL, Iwaniuk AN . 2018 Visual-cerebellar pathways and their roles in the control of avian flight. Front. Neurosci. 12, 223. (doi:10.3389/fnins.2018.00223) Crossref, PubMed, Web of Science, Google Scholar - 6.
Warrick DR . 2002 Bird maneuvering flight: blurred bodies, clear heads. Integr. Comp. Biol. 42, 141-148. (doi:10.1093/icb/42.1.141) Crossref, PubMed, Web of Science, Google Scholar - 7.
McArthur KL, Dickman JD . 2011 State-dependent sensorimotor processing: gaze and posture stability during simulated flight in birds. J. Neurophysiol. 105, 1689-1700. (doi:10.1152/jn.00981.2010) Crossref, PubMed, Web of Science, Google Scholar - 8.
Bilo D, Bilo A . 1983 Neck flexion related activity of flight control muscles in the flow-stimulated pigeon. J. Comp. Physiol. 153, 111-122. (doi:10.1007/BF00610348) Crossref, Google Scholar - 9.
Gross NB . 1970 Sensory representation within the cerebellum of the pigeon. Brain Res. 21, 280-283. (doi:10.1016/0006-8993(70)90369-0) Crossref, PubMed, Web of Science, Google Scholar - 10.
Schulte M, Necker R . 1998 Processing of spinal somatosensory information in anterior and posterior cerebellum of the pigeon. J. Comp. Physiol. A 183, 111-120. (doi:10.1007/s003590050239) Crossref, Web of Science, Google Scholar - 11.
Necker R . 2001 Spinocerebellar projections in the pigeon with special reference to the neck region of the body. J. Comp. Neurol. 429, 403-418. (doi:10.1002/1096-9861(20010115)429:3<403::AID-CNE4>3.0.CO;2-Z) Crossref, PubMed, Web of Science, Google Scholar - 12.
Marzluff JM, Miyaoka R, Minoshima S, Cross DJ . 2012 Brain imaging reveals neuronal circuitry underlying the crow's perception of human faces. Proc. Natl Acad. Sci. USA 109, 15 912-15 917. (doi:10.1073/pnas.1206109109) Crossref, Web of Science, Google Scholar - 13.
Swift KN, Marzluff JM, Templeton CN, Shimizu T, Cross DJ . 2020 Brain activity underlying American crow processing of encounters with dead conspecifics. Behav. Brain Res. 385, 112546. (doi:10.1016/j.bbr.2020.112546) Crossref, PubMed, Web of Science, Google Scholar - 14.
Feenders G, Liedvogel M, Rivas M, Zapka M, Horita H, Hara E, Wada K, Mouritsen H, Jarvis ED . 2008 Molecular mapping of movement-associated areas in the avian brain: a motor theory for vocal learning origin. PLoS ONE 3, e1768. (doi:10.1371/journal.pone.0001768) Crossref, PubMed, Web of Science, Google Scholar - 15.
Gold MEL, Schulz D, Budassi M, Gignac PM, Vaska P, Norell MA . 2016 Flying starlings, PET and the evolution of volant dinosaurs. Curr. Biol. 26, R265-R267. (doi:10.1016/j.cub.2016.02.025) Crossref, PubMed, Web of Science, Google Scholar - 16.
Schulz D 2011 Simultaneous assessment of rodent behaviour and neurochemistry using a miniature positron emission tomograph. Nat. Methods 8, 347-352. (doi:10.1038/nmeth.1582) Crossref, PubMed, Web of Science, Google Scholar - 17.
Güntürkün O, Verhoye M, De Groof G, Van der Linden A . 2013 A 3-dimensional digital atlas of the ascending sensory and the descending motor systems in the pigeon brain. Brain Struct. Funct. 218, 269-281. (doi:10.1007/s00429-012-0400-y) Crossref, PubMed, Web of Science, Google Scholar - 18.
Engelage J, Bischof H-J . 1993 The organization of the tectofugal pathway in birds: a comparative review. In Vision, brain, and behaviour in birds (edsZeigler HP, Bischof H-J ), pp. 137-158. Cambridge, UK: MIT Press. Google Scholar - 19.
Bischof H-J, Watanabe S . 1997 On the structure and function of the tectofugal visual pathway in laterally eyed birds. Eur. J. Morphol. 35, 246-254. (doi:10.1076/ejom.35.4.246.13080) Crossref, PubMed, Google Scholar - 20.
Güntürkün O, Miceli D, Watanabe M . 1993 Anatomy of the avian thalamofugal pathway. In Vision, brain, and behaviour in birds (edsZeigler HP, Bischof HJ ), pp. 115-135. Cambridge, MA: MIT Press. Google Scholar - 21.
Wagner H, Frost B . 1994 Binocular responses of neurons in the barn owl's visual wulst. J. Comp. Physiol. A 174, 661-670. (doi:10.1007/BF00192715) Crossref, Web of Science, Google Scholar - 22.
Bischof H-J, Eckmeier D, Keary N, Löwel S, Mayer U, Michael N . 2016 Multiple visual field representations in the visual wulst of a laterally eyed bird, the zebra finch (Taeniopygia guttata). PLoS ONE 11, e0154927. (doi:10.1371/journal.pone.0154927) Crossref, PubMed, Web of Science, Google Scholar - 23.
Michael N, Löwel S, Bischof H-J . 2015 Features of the retinotopic representation in the visual wulst of a laterally eyed bird, the zebra finch (Taeniopygia guttata). PLoS ONE 10, e0124917. (doi:10.1371/journal.pone.0124917) Crossref, PubMed, Web of Science, Google Scholar - 24.
Guttiérez-Ibáñez C, Wylie DR, Altschuler DL . 2023 From the eye to the wing: neural circuits for transforming optic flow into motor output in avian flight. J. Comp. Physiol. A 209, 839-854. (doi:10.1007/s00359-023-01663-5) Crossref, Google Scholar - 25.
Pei R 2020 Potential for powered flight neared by most close avialan relatives, but few crossed its thresholds. Curr. Biol. 30, 4033-4046.e8. (doi:10.1016/j.cub.2020.06.105) Crossref, PubMed, Web of Science, Google Scholar - 26.
Brusatte SL, Lloyd GT, Wang SC, Norell MA . 2014 Gradual assembly of avian body plan culminated in rapid rates of evolution across the dinosaur-bird transition. Curr. Biol. 24, 2386-2392. (doi:10.1016/j.cub.2014.08.034) Crossref, PubMed, Web of Science, Google Scholar - 27.
Ksepka DT 2020 Tempo and pattern of avian brain size evolution. Curr. Biol. 30, 2026-2036.e3. (doi:10.1016/j.cub.2020.03.060) Crossref, PubMed, Web of Science, Google Scholar - 28.
Balanoff AM, Bever GS, Rowe TB, Norell MA . 2013 Evolutionary origins of the avian brain. Nature 501, 93-96. (doi:10.1038/nature12424) Crossref, PubMed, Web of Science, Google Scholar - 29.
Balanoff AM, Smaers JB, Turner AH . 2016 Brain modularity across the theropod–bird transition: testing the influence of flight on neuroanatomical variation. J. Anat. 229, 204-214. (doi:10.1111/joa.12403) Crossref, PubMed, Web of Science, Google Scholar - 30.
Balanoff AM, Bever GS . 2020 The role of endocasts in the study of brain evolution. In Evolution of nervous systems (ed.Kaas J ), pp. 223-241. Amsterdam, The Netherlands: Elsevier. (doi:10.1016/B978-0-12-820584-6.00003-9) Google Scholar - 31.
Lautenschlager S, Rayfield EJ, Altangerel P, Zanno LE, Witmer LM . 2012 The endocranial anatomy of Therizinosauria and its implications for sensory and cognitive function. PLoS ONE 7, e52289. (doi:10.1371/journal.pone.0052289) Crossref, PubMed, Web of Science, Google Scholar - 32.
Torres CR, Norell MA, Clarke JA . 2021 Bird neurocranial and body mass evolution across the end-Cretaceous mass extinction: the avian brain shape left other dinosaurs behind. Sci. Adv. 7, eabg7099. (doi:10.1126/sciadv.abg7099) Crossref, PubMed, Web of Science, Google Scholar - 33.
Jerison HJ . 1973 Evolution of the brain and intelligence. New York, NY: Academic Press. Google Scholar - 34.
Salerno M, Ferrer E, Wei S, Li X, Gao W, Ouellette D, Balanoff A, Vaska P . 2019 Behavioural neuroimaging in birds using PET. J. Neurosci. Methods 317, 157-164. (doi:10.1016/j.jneumeth.2019.01.017) Crossref, PubMed, Web of Science, Google Scholar - 35.
Nichols TE, Holmes AP . 2002 Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum. Brain Mapp. 15, 1-25. (doi:10.1002/hbm.1058) Crossref, PubMed, Web of Science, Google Scholar - 36.
Watanabe A, Balanoff AM, Gignac PM, Gold MEL, Norell MA . 2021 Novel neuroanatomical integration and scaling define avian brain shape evolution and development. eLife 10, e68809. (doi:10.7554/eLife.68809) Crossref, PubMed, Web of Science, Google Scholar - 37.
Grillner S . 1985 Neurobiological bases of rhythmic motor acts in vertebrates. Science 228, 143-149. (doi:10.1126/science.3975635) Crossref, PubMed, Web of Science, Google Scholar - 38.
Steeves JD, Sholomenko GN, Webster DMS . 1987 Stimulation of the pontomedullary reticular formation initiates locomotion in decerebrate birds. Brain Res. 401, 205-212. (doi:10.1016/0006-8993(87)91406-5) Crossref, PubMed, Web of Science, Google Scholar - 39.
Shimizu T, Watanabe S . 2012 The avian visual system: overview. In How animals see the world: comparative behaviour, biology, and evolution of vision (edsLazareva OF, Shimizu T, Wasserman EA ), pp. 473-482. Oxford, UK: Oxford University Press. Google Scholar - 40.
Nguyen AP, Spetch ML, Crowder NA, Winship IR, Hurd PL, Wylie DRW . 2004 A dissociation of motion and spatial-pattern vision in the avian telencephalon: implications for the evolution of ‘visual streams’. J. Neurosci. 24, 4962-4970. (doi:10.1523/jneurosci.0146-04.2004) Crossref, PubMed, Web of Science, Google Scholar - 41.
Reiner A, Yamamoto K, Karten HJ . 2005 Organization and evolution of the avian forebrain. Anat. Rec. 287A, 1080-1102. (doi:10.1002/ar.a.20253) Crossref, Google Scholar - 42.
Shanahan M, Bingman VP, Shimizu T, Wild M, Güntürkün O . 2013 Large-scale network organization in the avian forebrain: a connectivity matrix and theoretical analysis. Front. Comput. Neurosci. 7, 89. (doi:10.3389/fncom.2013.00089) Crossref, PubMed, Web of Science, Google Scholar - 43.
Fernández M, Morales C, Durán E, Fernández-Colleman S, Sentis E, Mpodozis J, Karten HJ, Marín GJ . 2020 Parallel organization of the avian sensorimotor arcopallium: tectofugal visual pathway in the pigeon (Columba livia). J. Comp. Neurol. 528, 597-623. (doi:10.1002/cne.24775) Crossref, PubMed, Web of Science, Google Scholar - 44.
Briscoe SC, Albertin CB, Rowell JJ, Ragsdale CW . 2018 Neocortical association cell types in the forebrain of birds and alligators. Curr. Biol. 28, 686-696. (doi:10.1016/j.cub.2018.01.036) Crossref, PubMed, Web of Science, Google Scholar - 45.
Gagliardo A . 2013 Forty years of olfactory navigation in birds. J. Exp. Biol. 216, 2165-2171. (doi:10.1242/jeb.070250) Crossref, PubMed, Web of Science, Google Scholar - 46.
Butler AB, Hodos W . 2005 Comparative vertebrate neuroanatomy: evolution and adaptation, 2nd edn. New York, NY: John Wiley & Sons. Crossref, Google Scholar - 47.
Whitlock DG . 1952 A neurohistological and neurophysiological study of afferent fiber tracts and receptive areas of the avian cerebellum. J. Comp. Neurol. 97, 567-635. (doi:10.1002/cne.900970307) Crossref, PubMed, Web of Science, Google Scholar - 48.
Iwaniuk AN, Hurd PL, Wylie DRW . 2007 Comparative morphology of the avian cerebellum: II. Size of folia. Brain Behav. Evol. 69, 196-219. (doi:10.1159/000096987) Crossref, PubMed, Web of Science, Google Scholar - 49.
Green PR, Davies MNO, Thorpe PH . 1994 Head-bobbing and head orientation during landing flights of pigeons. J. Comp. Physiol. A 174, 249-256. (doi:10.1007/BF00193791) Crossref, Web of Science, Google Scholar - 50.
Bhagavatula PS, Claudianos C, Ibbotson MR, Srinivasan MV . 2011 Optic flow cues guide flight in birds. Curr. Biol. 21, 1794-1799. (doi:10.1016/j.cub.2011.09.009) Crossref, PubMed, Web of Science, Google Scholar - 51.
Ungurean G, Behroozi M, Böger L, Helluy X, Libourel P-A, Güntürkün O, Rattenborg NC . 2023 Wide-spread brain activation and reduced CSF flow during avian REM sleep. Nat. Commun. 14, 3259. (doi:10.1038/s41467-023-38669-1) Crossref, PubMed, Web of Science, Google Scholar - 52.
Wilson VJ, Anderson JA, Felix D . 1974 Unit and field potential activity evoked in the pigeon vestibulocerebellum by stimulation of individual semicircular canals. Exp. Brain Res. 19, 142-157. (doi:10.1007/BF00238531) Crossref, PubMed, Web of Science, Google Scholar - 53.
Bilo D, Bilo A . 1978 Wind stimuli control vestibular and optokinetic reflexes in the pigeon. Naturwissenschaften 65, 161-162. (doi:10.1007/BF00440356) Crossref, Google Scholar - 54.
Ros IG, Biewener AA . 2017 Pigeons (C. livia) follow their head during turning flight: head stabilization underlies the visual control of flight. Front. Neurosci. 11, 655. (doi:10.3389/fnins.2017.00655) Crossref, PubMed, Web of Science, Google Scholar - 55.
Kverkova K 2022 The evolution of brain neuron numbers in amniotes. Proc. Natl Acad. Sci. USA 119, e2121624119. (doi:10.1073/pnas.212162411) Crossref, PubMed, Web of Science, Google Scholar - 56.
Kundrát M . 2007 Avian-like attributes of a virtual brain model of the oviraptorid theropod Conchoraptor gracilis. Naturwissenschaften 94, 499-504. (doi:10.1007/s00114-007-0219-1) Crossref, PubMed, Web of Science, Google Scholar - 57.
Balanoff AM, Norell MA, Hogan AVC, Bever GS . 2018 The endocranial cavity of oviraptorosaur dinosaurs and the increasingly complex, deep history of the avian brain. Brain Behav. Evol. 91, 125-135. (doi:10.1159/000488890) Crossref, PubMed, Web of Science, Google Scholar - 58.
Tallinen T, Chung JY, Biggins JS, Mahadevan L . 2014 Gyrification from constrained cortical expansion. Proc. Natl Acad. Sci. USA 111, 12 667-12 672. (doi:10.1073/pnas.1406015111) Crossref, Web of Science, Google Scholar - 59.
Larsson HCE, Sereno PC, Wilson JA . 2000 Forebrain enlargemant among nonavian theropod dinosaurs. J. Vertebr. Paleontol. 20, 615-618. (doi:10.1671/0272-4634(2000)020[0615:FEANTD]2.0.CO;2) Crossref, Web of Science, Google Scholar - 60.
Pearson KG . 1995 Proprioceptive regulation of locomotion. Curr. Opin. Neurobiol. 5, 786-791. (doi:10.1016/0959-4388(95)80107-3) Crossref, PubMed, Web of Science, Google Scholar - 61.
Gould SJ, Vrba ES . 1982 Exaptation—a missing term in the science of form. Paleobiology 8, 4-15. (doi:10.1017/S0094837300004310) Crossref, Web of Science, Google Scholar - 62.
Witmer LM, Chatterjee S, Franzosa J, Rowe T . 2003 Neuroanatomy of flying reptiles and implications for flight, posture, and behavior. Nature 425, 950-953. (doi:10.1038/nature02048) Crossref, PubMed, Web of Science, Google Scholar - 63.
Balanoff A et al. 2024 Quantitative functional imaging of the pigeon brain: implications for the evolution of avian powered flight. Figshare. (doi:10.6084/m9.figshare.c.7021311) Google Scholar